Annals of Health Research

IN THIS ISSUE

- *Cannabis sativa*
- Bibliographic analysis of Ugandan Medical Research
- Patients' Perception of Anaesthesia
- Determinants of Low Birth Weight
- Risky Sexual Behaviours and HIV
- Hyoscine bromide in Hysterosalpingography
- Necrotising Fasciitis
- Autoamputation in Breast Cancer

PUBLISHED BY THE MEDICAL AND DENTAL CONSULTANTS ASSOCIATION OF NIGERIA, OOUTH, SAGAMU, NIGERIA. www.mdcan.oouth.org.ng
Determinants of Low Birth Weight among Term Babies at the Sacred Heart Hospital, Abeokuta, Nigeria

Olafimihan VI*1, Ariba AJ2, Malomo SO3

1Department of Family Medicine, Sacred Heart Hospital, Lantoro, Abeokuta, Ogun State, Nigeria
2Department of Family Medicine, Olabisi Onabanjo University Teaching Hospital, Sagamu, Ogun State, Nigeria
3Department of Family Medicine, Federal Medical Centre, Abeokuta, Ogun State, Nigeria

*Correspondence: Dr VI Olafimihan, Medical Unit, International Institute of Tropical Agriculture (IITA) Headquarters, PMB 5320, Ibi-Ose, Oyo Road, Ibadan, Oyo State. E-mail: victoriaolafimihan@gmail.com.
ORCID – https://orcid.org/0000-0001-9564-1879.

Abstract

Background: Low birth weight (LBW) is a major contributor to the global burden of neonatal morbidity and mortality. It is important to identify the significant determinants of LBW, mainly among term babies, who should have achieved optimal weight gain before delivery to reduce the burden of LBW.

Objectives: To determine the Prevalence of LBW among term babies delivered in a Nigerian hospital and the socio-demographic and clinical correlates of LBW.

Methods: A cross-sectional study was conducted among two hundred and twenty-seven term babies and their mothers at the Sacred Heart Hospital, Lantoro (SHHL), Abeokuta, Nigeria, between November 2017 and February 2018.

Results: The Prevalence of LBW was 4.4%. Over 90% of the mothers were educated, married and employed. There was a significant association between term-LBW and maternal booking BMI, anaemia at booking, multiple pregnancies, alcohol intake in pregnancy and paternal level of education. Underweight booking BMI, anaemia at booking, and low paternal level of education were independent predictors of term-LBW.

Conclusions: The Prevalence of term-LBW babies in this study was relatively low. Aside from multiple pregnancies, the other main determinants of LBW include modifiable parental socioeconomic factors. Further reduction in term LBW can be achieved by improving parental education and enhancing maternal health through pre-conception care.

Keywords: Antenatal Care, Booking BMI, Anaemia at Booking, Paternal Level of Education, Pre-conception Care.

Introduction

Birth weight (BW) is an essential indicator of neonatal and childhood survival. [1] Low birth weight (LBW) babies (BW < 2.5 kg) are at a higher risk of perinatal morbidity and mortality compared to babies with normal weight. This is due to some intrinsic or extrinsic factors, ranging from the birth process to environmental factors. [1,2] For instance, LBW babies have been shown to have an intrinsically higher risk of developing cardiovascular diseases in adulthood. [3-5] The proportion of babies with LBW is still unacceptable. The World Health Organization (WHO) estimated that 15 - 20 % of all newborns were LBW, with the highest proportion occurring figure is even regarded as an underestimation as
most deliveries occur outside health facilities with no record of BW and no official report of birth made to allow for reliable assessment. [6] In Nigeria, a World Bank report showed a marginal reduction in LBW rate over 20 years, from 11.9 % in 1990 through 11.6 % in 1999 to 11.7 % in 2008. [7] Previous studies in Nigeria had reported prevalence rates of 8.3 % to 20.5 %, with variations noted in different regions. [8-11] Few of these reports were on term babies. The prevalence of term LBW reported in the country and other parts of the world ranged from 5.2 to 6.4 %. [12-14] The report from a study close to SHHL recorded a rate of 5.7 % among babies studied in 2013. [12]

Prematurity and intrauterine growth restriction (IUGR) are the main contributors to LBW. [15] Several studies on LBW have reported prematurity as a prominent cause. [2,9,10,15] It may not be surprising to find preterm babies with LBW, as such babies may not have gained adequate weight before birth. However, it is worrisome to find term babies with LBW. Unfortunately, there is a lack of studies reporting such in the environment. [12]

Various factors, including parental education, maternal health status, and socioeconomic factors, have contributed to the LBW burden. [8-10,16,17] It is necessary to identify the specific factors responsible for term babies delivered in SHHL. This centre has been providing maternal and neonatal care in Ogun state for over half a century. [18] Therefore, this study sought to determine the rate of occurrence of LBW in term babies and identify associated socio-demographic and clinical factors that could be targeted to reduce the LBW rate among term babies.

Methods

Study design
This was a hospital-based, cross-sectional study.

Setting
The study was conducted at the Sacred Heart Hospital, Lantoro (SHHL), Abeokuta, Nigeria, a secondary healthcare centre. It is the oldest hospital in Nigeria, established by the Catholic mission in 1895. [18]

Study population
These consisted of term babies delivered at the SHHL and their mothers. Mothers who had their babies in the hospital during the study were qualified for inclusion irrespective of their antenatal clinic booking status.

Sample size calculation:
The sample size was determined using the formula: [19]

\[ n = \frac{z^2 \times p \times q}{d^2} \]

where \( z \) = Standard normal deviate of 1.96, corresponding to 95 % Confidence Interval (CI).
\( p \) = Prevalence of LBW among term babies (5.7% in Sagamu [12] = 0.057)
\( q \) = Proportion of babies without the attribute of interest = (1.0-\( p \)) = 0.943
\( d \) = degree of accuracy desired, set at 0.03

Correction for total study population < 10,000 was done using the formula: \( nf = \frac{n}{1+\frac{n}{N}} \)
Where \( nf \) = desired sample size when the sample population is less than 10,000
\( N \) = Study population size (total number of deliveries at SHHL in 2016) = 2,027 and \( n = 229.433 \)
Thus, \( nf = \frac{n}{1+\frac{n}{N}} = 229.433/\{1+229.433/2,027\} = 206.104 \)
The minimum sample size was 206. This was increased by 10 % to 226.6, approximately 227 participants, to increase its precision and make provision for non-response.

Sampling Technique
A systematic random sampling technique was used to select 227 participants. A sample interval of 2 was used, and the data was collected over 16 weeks (from November 2017 to February 2018).
Determinants of Low Birth Weight

Selection Criteria: Babies delivered at the gestational age of 37 completed weeks or more and their mothers who gave voluntary consent were recruited. Stillbirth/Intrauterine foetal demise and babies with uncertain gestational age were excluded. Each baby participant had their data collected from the mother. The few babies that were products of twin gestations were recruited as a set from the same mother, and they were not necessarily paired.

Definition of terms
Anaemia: This is defined as Packed Cell Volume less than 30%.
Underweight: This refers to a Body Mass Index of less than 18.5kg/m².
Term: Gestational age at birth ≥37 weeks from the maternal last menstrual period (LMP) or using earliest first-trimester obstetric ultrasound.
The socioeconomic class of babies were determined using a validated tool created by Ogunlesi et al. [20] This made use of both parents’ level of education and occupation to determine the social class. Babies were classified into five classes (I-V), with class I as the highest and V as the lowest.
The socio-demographic data collected included maternal age, marital status, religion, tribe, occupation, maternal and paternal educational level and income.
Clinical data included maternal parity, estimated gestational age (EGA), inter-pregnancy interval, antenatal clinic (ANC) booking weight, height, body mass index (BMI) and gestational weight gain (GWG). The booking weight and height were retrieved from ANC records and confirmed from the few mothers who registered elsewhere but were delivered at SHHL. History of chronic hypertension, pre-existing diabetes mellitus, booking packed cell volume (PCV), and the retroviral status of the mothers were retrieved from the ANC record for booked participants. Medical conditions which evolved during pregnancy [malaria, anaemia, urinary tract infection (UTI), hypertension and gestational diabetes mellitus (GDM)] were also noted. The use of substances (alcoholism and cigarette smoking) and local herbs were also recorded.

Data Analysis
Data were analysed using IBM SPSS for Windows, version 21 (IBM Corp., Armonk, NY, USA). The socio-demographic characteristics of the respondents were described using tables and charts. Continuous variables were summarised as means and standard deviations, while categorical variables were summarised as percentages. The Chi-Square test was used to determine the association between LBW and independent variables, and the level of significance was set at a P value ≤ 0.05. Multiple logistic regression analysis was used to determine the independent predictors of LBW in the babies. Odds ratios (OR) and 95 % confidence intervals (95 % CI) were calculated to assess the strength of association of the significant factors.

Ethical Considerations
Ethical clearance (with certificate number SHH/EC/EA/03/04/17) was obtained from the SHHL Ethical committee. Voluntary written consent was obtained from mothers. Data were collected with no harm inflicted on the study participants, and the information obtained was handled with confidentiality.

Results

Babies’ characteristics at birth (Table I)
Overall, 227 babies were studied. Their mean BW was 3.23±0.46 kg (range: 1.50 – 4.75 kg), and the mean EGA at birth was 39.15±1.23 weeks. Male babies were slightly heavier than their female counterparts (3.27±0.50 kg vs 3.19±0.40 kg). The prevalence of LBW was 4.4 % (10/227).
Table I: Babies’ characteristics at birth

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight categories</td>
<td>&lt;2.5 kg</td>
<td>10 (4.4)</td>
</tr>
<tr>
<td></td>
<td>≥2.5 kg</td>
<td>217 (95.6)</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>114 (50.2)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>113 (49.8)</td>
</tr>
<tr>
<td>Congenital Anomalies</td>
<td>Yes</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>227 (100.0)</td>
</tr>
<tr>
<td>Type of Pregnancy</td>
<td>Singleton</td>
<td>219 (96.5)</td>
</tr>
<tr>
<td></td>
<td>Multiple</td>
<td>8 (3.5)</td>
</tr>
<tr>
<td>Birth Order</td>
<td>1</td>
<td>64 (28.2)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>68 (30.0)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>57 (25.1)</td>
</tr>
<tr>
<td></td>
<td>4 and above</td>
<td>38 (16.7)</td>
</tr>
<tr>
<td>APGAR score</td>
<td>1-minute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&lt;7</td>
<td>61 (26.9)</td>
</tr>
<tr>
<td></td>
<td>7-10</td>
<td>166 (73.1)</td>
</tr>
<tr>
<td></td>
<td>5-minute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>&lt;7</td>
<td>23 (10.1)</td>
</tr>
<tr>
<td></td>
<td>7-10</td>
<td>204 (89.9)</td>
</tr>
</tbody>
</table>

Socio-demographic characteristics of the mothers (Table II)
The maternal age range was 17 – 45 years [mean of 30.93±5.52 years], and the modal age group was 20 – 34 years (70.9 %). Most of the mothers were married (216; 96.5 %), had at least a secondary level of education (218; 96.0%) and were employed (207; 91.2 %). Most fathers had post-secondary education (167; 74.4 %), and all except one (99.6 %) were employed.

Socioeconomic class of the babies (Figure1): The majority of the babies belonged to social class III (122; 53.7 %), while only one baby (0.4 %) belonged to social class I.

Clinical characteristics of the mothers
Booking characteristics (Table III): Data on ANC booking anaemia was available from 224 mothers, and booking BMI was retrievable in 225 women. Most mothers (220; 96.92 %) booked for ANC at the study centre. The mean height of the women was 1.60±0.75m, and their mean booking weight was 66.6±12.60 kg. One hundred and twenty-one (53.3 %) had an inter-pregnancy interval of 24 months and above. Anaemia at booking was recorded in 24 (10.7 %) of the mothers.

The medical characteristics of the mothers in pregnancy (Table IV): GWG was determined in 225 mothers with known booking weight. Among the mothers, 43 (18.9 %) developed hypertension in pregnancy, while only one (0.4 %) had gestational diabetes. Malaria in pregnancy was the prevailing medical condition recorded among 114 (50.2 %). At presentation for delivery, 15 (6.6 %) of these women had anaemia.

Correlates of low birth weight among term babies
Neonatal factors (Table V): A baby’s gestational type was associated with term LBW (p = 0.004). There was no association between LBW and gender, birth order, and babies’ social class.

Maternal socio-demographic factors (Table VI): There was no association between term LBW and maternal socio-demographic characteristics. However, paternal level of education was significantly associated with LBW (Table VI).
Determinants of Low Birth Weight

Maternal clinical factors (Table VII): Lower booking BMI of the mother (p < 0.001), anaemia at
the time of ANC booking (p = 0.044) and alcohol intake in pregnancy (p = 0.033) were associated
with term LBW.

![Proportion of babies by socio-economic class]

Figure 1: Distribution of babies according to families’ socioeconomic classes

Independent predictors of term LBW (Table VIII): The multiple logistic regression analysis showed
that maternal underweight at ANC booking (p = 0.019; OR= 30.228, CI= 1.761-518.963) and
anaemia (p = 0.018; OR=8.336, CI= 1.432-48.543) as well as paternal level of education below post-
secondary level (p = 0.017; OR= 9.985, CI= 1.636-60.957) were independent predictors of term
LBW. Underweight mothers were 30 times more likely to have LBW at term. On the other hand,
mothers with ANC booking anaemia and low paternal education had 8.3 times and ten times,
respectively, the likelihood of having term LBW. The use of alcohol during pregnancy and the type
of pregnancy did not independently predict term LBW.

Discussion

This study determined the Prevalence of LBW among term babies and the factors that predict it.
The mean BW (3.23±0.46 kg) of the babies in the present study is similar to the findings reported
among term babies in a retrospective study in Iran (3.20±0.47 kg)\textsuperscript{13} but slightly higher than the
findings among term babies in Sagamu, Nigeria (3180 ± 501 g)\textsuperscript{12} and Northern region of Ghana
(2.98 ± 0.46 kg).\textsuperscript{3} The heavier BW of the male babies compared to the females also agrees with
the report of many studies.\textsuperscript{11-13,16,20,21} This was not a significant finding in the present study. The
higher BW in male babies has been attributed to the effect of androgen secretion by the male
foetus, which results in high lean mass.\textsuperscript{16}

The prevalence of LBW among the babies in this study (4.4\%) is lower than the figures obtained
from previous studies conducted among term babies in Sagamu (5.7 \%), Iran (5.2 \%) and
Zimbabwe (6.4 \%).\textsuperscript{12-14} The lower prevalence observed in the present study could be attributed
to the socio-demographic characteristics of the mothers. Most of them were educated, married
and employed, and this improved maternal socioeconomic status positively impacted BW.
Although this is a known fact, it bears repetition
that optimising the socioeconomic status of women, even in a low-income country like Nigeria, can significantly improve newborn’s well-being characteristics with an attendant reduction in perinatal morbidity and mortality.

Table II: Socio-demographic characteristics of the mothers and their spouses

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range (Years)</td>
<td>&lt; 20</td>
<td>4 (1.8)</td>
</tr>
<tr>
<td></td>
<td>20 – 34</td>
<td>161 (70.9)</td>
</tr>
<tr>
<td></td>
<td>≥ 35</td>
<td>62 (27.3)</td>
</tr>
<tr>
<td>Marital Status</td>
<td>Single</td>
<td>8 (3.5)</td>
</tr>
<tr>
<td></td>
<td>Married</td>
<td>219 (96.5)</td>
</tr>
<tr>
<td>Tribe</td>
<td>Yoruba</td>
<td>204 (89.9)</td>
</tr>
<tr>
<td></td>
<td>Igbo</td>
<td>16 (7.0)</td>
</tr>
<tr>
<td></td>
<td>Hausa</td>
<td>4 (1.8)</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>3 (1.3)</td>
</tr>
<tr>
<td>Religion</td>
<td>Christianity</td>
<td>149 (65.6)</td>
</tr>
<tr>
<td></td>
<td>Islam</td>
<td>77 (34.0)</td>
</tr>
<tr>
<td></td>
<td>Traditional belief</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Level of Education</td>
<td>No formal education</td>
<td>4 (1.8)</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>5 (2.2)</td>
</tr>
<tr>
<td></td>
<td>Junior secondary</td>
<td>5 (2.2)</td>
</tr>
<tr>
<td></td>
<td>Senior secondary</td>
<td>73 (32.1)</td>
</tr>
<tr>
<td></td>
<td>Post-secondary</td>
<td>140 (61.7)</td>
</tr>
<tr>
<td>Occupation</td>
<td>Trading</td>
<td>101 (44.5)</td>
</tr>
<tr>
<td></td>
<td>Artisan</td>
<td>23 (10.1)</td>
</tr>
<tr>
<td></td>
<td>Teaching</td>
<td>25 (11.0)</td>
</tr>
<tr>
<td></td>
<td>Public servant</td>
<td>17 (7.5)</td>
</tr>
<tr>
<td></td>
<td>Civil servant</td>
<td>25 (11.0)</td>
</tr>
<tr>
<td></td>
<td>Unemployed</td>
<td>20 (8.8)</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>16 (7.1)</td>
</tr>
<tr>
<td>Paternal level of education</td>
<td>No formal education</td>
<td>3 (1.3)</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>5 (2.2)</td>
</tr>
<tr>
<td></td>
<td>Junior secondary</td>
<td>4 (1.8)</td>
</tr>
<tr>
<td></td>
<td>Senior secondary</td>
<td>46 (20.3)</td>
</tr>
<tr>
<td></td>
<td>Post-secondary</td>
<td>169 (74.4)</td>
</tr>
<tr>
<td>Paternal Occupation</td>
<td>Trading</td>
<td>60 (26.4)</td>
</tr>
<tr>
<td></td>
<td>Artisan</td>
<td>15 (6.6)</td>
</tr>
<tr>
<td></td>
<td>Teaching</td>
<td>9 (4.0)</td>
</tr>
<tr>
<td></td>
<td>Public servant</td>
<td>29 (12.8)</td>
</tr>
<tr>
<td></td>
<td>Civil servant</td>
<td>53 (23.3)</td>
</tr>
<tr>
<td></td>
<td>Professional</td>
<td>21 (9.3)</td>
</tr>
<tr>
<td></td>
<td>Unemployed</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>39 (17.2)</td>
</tr>
</tbody>
</table>

The higher prevalence of LBW babies reported for women in the age group of 20 – 34 years in the present study, with none recorded among teenagers, is similar to Yilgwan et al. in Jos, north central Nigeria. [8] Both studies had the majority of their women in this age group and a lower proportion as teenagers, unlike the studies in Maiduguri, north-eastern Nigeria, and other parts of Africa such as Ethiopia and Zimbabwe, where the prevalence of LBW was higher among teenagers and women aged 35 years and above. [10,14,22] Some studies had reported lower maternal education as a factor associated with LBW. [10,14] On the contrary, the present study recorded more LBW among mothers with a secondary level of education (9.6 %), with none recorded among
Determinants of Low Birth Weight

those of lower educational qualifications. The fact that most of the mothers had higher levels of education may explain this observation. [10,14]

Table III: Antenatal booking characteristics of the mothers

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booking Status</td>
<td>Booked</td>
<td>220 (96.9)</td>
</tr>
<tr>
<td></td>
<td>Un-booked</td>
<td>6 (2.7)</td>
</tr>
<tr>
<td></td>
<td>Referred</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Parity</td>
<td>Nulliparous</td>
<td>64 (28.2)</td>
</tr>
<tr>
<td></td>
<td>Multiparous</td>
<td>161 (70.9)</td>
</tr>
<tr>
<td></td>
<td>Grand multiparous</td>
<td>2 (0.9)</td>
</tr>
<tr>
<td>Inter-pregnancy interval</td>
<td>&lt; 24</td>
<td>106 (46.7)</td>
</tr>
<tr>
<td>(months)</td>
<td>&gt; 24</td>
<td>121 (53.3)</td>
</tr>
<tr>
<td>Height (metres)</td>
<td>&lt; 1.45</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>1.45 - 1.59</td>
<td>101 (44.5)</td>
</tr>
<tr>
<td></td>
<td>≥ 1.60</td>
<td>126 (55.5)</td>
</tr>
<tr>
<td>Booking BMI (kg/m²)</td>
<td>&lt;18.5</td>
<td>8 (3.6)</td>
</tr>
<tr>
<td></td>
<td>18.50-24.99</td>
<td>102 (45.3)</td>
</tr>
<tr>
<td></td>
<td>25.00-29.99</td>
<td>61 (27.1)</td>
</tr>
<tr>
<td></td>
<td>≥30.00</td>
<td>54 (24.0)</td>
</tr>
<tr>
<td>Chronic hypertension</td>
<td>Yes</td>
<td>12 (5.3)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>215 (94.7)</td>
</tr>
<tr>
<td>Pre-existing Diabetes</td>
<td>Yes</td>
<td>5 (2.2)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>222 (97.8)</td>
</tr>
<tr>
<td>History of LBW delivery</td>
<td>Yes</td>
<td>15 (6.6)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>212 (93.4)</td>
</tr>
<tr>
<td>Retroviral status</td>
<td>Reactive</td>
<td>9 (4.0)</td>
</tr>
<tr>
<td></td>
<td>Non-reactive</td>
<td>218 (96.0)</td>
</tr>
<tr>
<td>Booking PCV</td>
<td>&lt; 30 %</td>
<td>24 (10.7)</td>
</tr>
<tr>
<td></td>
<td>≥ 30 %</td>
<td>200 (89.3)</td>
</tr>
</tbody>
</table>

This could also account for the lack of association between LBW and these mothers' marital status, occupation and income. These findings also buttress the suggestion of Yilgwan et al. in Jos, Nigeria, on the need to avoid interpreting the role of any factor in isolation as these factors are often interrelated. [8]

The present study observed a significant association between LBW and paternal educational status, more so as an independent correlate of LBW. Similar findings were also reported in other studies. [14,17,23] Higher paternal education appears protective as it improves the family’s socioeconomic status and enhances the care pregnant women receive. [17,23] Multiple gestation was associated with LBW in this study, similar to other studies findings. [17,24] However, it was not an independent predictor of term LBW in the present study unlike the finding reported by Dahlui, who used data from the 2013 Nigeria Demographic Survey. [17] This difference may be because the current study is hospital-based, and there were very few products of multiple gestations. Other factors in the newborn, like gender, birth order and congenital anomalies reported in other studies, were not associated with LBW in the present study. [16,25-27]
Table IV: Clinical characteristics of the mothers in pregnancy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWG (kg)</td>
<td>&lt; 7</td>
<td>64 (28.4)</td>
</tr>
<tr>
<td></td>
<td>7-11.49</td>
<td>109 (48.4)</td>
</tr>
<tr>
<td></td>
<td>≥11.5</td>
<td>52 (23.2)</td>
</tr>
<tr>
<td>Medical conditions managed during pregnancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>Yes</td>
<td>43 (18.9)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>184 (81.1)</td>
</tr>
<tr>
<td>Gestational diabetes mellitus</td>
<td>Yes</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>226 (99.6)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>Yes</td>
<td>26 (11.5)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>201 (88.5)</td>
</tr>
<tr>
<td>Malaria</td>
<td>Yes</td>
<td>114 (50.2)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>113 (49.8)</td>
</tr>
<tr>
<td>Anaemia</td>
<td>Yes</td>
<td>18 (7.9)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>209 (92.1)</td>
</tr>
<tr>
<td>Substances used in pregnancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cigarette</td>
<td>Yes</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>227 (100.0)</td>
</tr>
<tr>
<td>Alcohol</td>
<td>Yes</td>
<td>12 (5.3)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>215 (94.7)</td>
</tr>
<tr>
<td>Herbal mixture</td>
<td>Yes</td>
<td>75 (33.0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>152 (67.0)</td>
</tr>
<tr>
<td>PCV at presentation for delivery (%)</td>
<td>&lt; 30</td>
<td>15 (6.6)</td>
</tr>
<tr>
<td></td>
<td>≥30</td>
<td>212 (93.4)</td>
</tr>
</tbody>
</table>

Table V: Socio-clinical correlates of Low Birth Weight among babies

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Low birth weight</th>
<th>Chi-Square</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male (n = 114)</td>
<td>5 (4.4)</td>
<td>108 (95.6)</td>
<td>0.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Female (n = 113)</td>
<td>5 (4.4)</td>
<td>109 (95.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of gestation</td>
<td>Singleton (n = 219)</td>
<td>8 (6.7)</td>
<td>211 (96.3)</td>
<td>8.352</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Multiple (n = 8)</td>
<td>2 (25.0)</td>
<td>6 (75.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth order</td>
<td>1 (n = 64)</td>
<td>4 (6.2)</td>
<td>60 (93.8)</td>
<td>0.910</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2 (n = 68)</td>
<td>3 (4.4)</td>
<td>65 (95.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 (n = 67)</td>
<td>2 (3.5)</td>
<td>55 (96.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥4 (n = 38)</td>
<td>1 (2.6)</td>
<td>37 (97.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social class</td>
<td>I (n = 2)</td>
<td>0 (0.0)</td>
<td>2 (100.0)</td>
<td>1.346</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>II (n = 39)</td>
<td>1 (2.6)</td>
<td>38 (97.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III (n = 122)</td>
<td>5 (4.1)</td>
<td>117 (95.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV (n = 60)</td>
<td>4 (6.7)</td>
<td>56 (93.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V (n = 4)</td>
<td>0 (0.0)</td>
<td>4 (100.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

df - Degree of freedom

This study found an association between LBW and maternal ANC booking anaemic state both on bivariate and multivariate analyses. This could be a reflection of the pre-conception...
Determinants of Low Birth Weight

nutritional state. This finding also agrees with the results in India, where anaemia in the first trimester was associated with LBW with an increased risk of 5 - 20%.[28] A study in the UK found that iron depletion in women from early pregnancy was associated with an increased risk of delivery of Small-for-Gestational Age (SGA) babies, and a reduction of this risk by 30% was observed for every increase in haemoglobin concentration by 10g/l in the first half of pregnancy. [29] Anaemia reduces the amount of oxygen and nutrient delivery to the foetus due to inadequate blood supply to the uteroplacental bed.[25]

Although a higher prevalence of LBW was observed among women who had anaemia at delivery in this study, the finding was not statistically significant. This was unlike the results of Metgub et al. in India and Amosu et al. in Abeokuta, Nigeria. [28,30] The ready access of most mothers in the present study to ANC could account for this difference. The booking BMI was associated with LBW and was an independent correlate of LBW. LBW was prevalent among underweight women but decreased with an increase in BMI, in agreement with other studies. [17,23] Booking BMI reflects the nutritional state of women before pregnancy.[21,32] There was no association between LBW and gestational weight gain (GWG) in this study, similar to the finding in Ife, Osun state Nigeria.[31] On the contrary, the study in Northern Ghana reported an association between LBW and GWG.[3] The fact that most women in the present study had adequate GWG could account for the difference.

Although malaria in pregnancy was the most prevalent medical condition managed among the mothers, it was not associated with LBW, unlike what was reported in Maiduguri and Ibadan, both in Nigeria. [10,11] This can be explained by the intense preventive measures (repeated health education, counselling and use of IPTp) and early diagnosis and treatment of malaria during ANC at SHHL.

This study found no association between LBW and the use of herbs. The use of herbs in pregnancy has generated much interest recently, with different relationships reported. [33,34] In south-eastern Nigeria, where a relationship was reported between maternal herbal use and LBW, the availability of the herbs and the socioeconomic characteristics of both the women and their husbands were important determinants of the relationship. [34] In two other related studies from Europe and Canada, the effect of individual agents on BW was determined with different associations reported. [34,35] Because about one-third of the index study participants used herbal preparation in pregnancy, it may be necessary for the future to assess the effect of common substances used in this environment along with the duration of use, time of onset and associated factors to assess their effects on BW. On the contrary, although relatively few mothers consumed alcohol in this study, there was an association between LBW and alcohol consumption. Women who took alcohol during pregnancy had 4.5 times higher risks of delivering LBW babies, similar to Ireland and Zimbabwe's findings. [14,23]

Although five factors were found to be associated with LBW on bivariate analysis in this study, only low booking BMI (underweight), anaemia at ANC booking and low paternal education were the independent determinants of LBW among term babies on multivariate analysis. These findings agree with previous studies on optimised maternal nutrition before pregnancy.

It also supports the need to improve the family's socioeconomic status through improved education of both male and female members to allow for adequate support for the women during their reproductive years and, thus, improve the health status of the family.

| Table VI: Socio-demographic correlates of low birth weight among mothers |

©Annals of Health Research. Volume 8, Issue No. 3, 2022_______________________185
Emphasising the girl-child's nutrition from early childhood and puberty, as well as ensuring optimal health status before conception through effective pre-conception care, are essential to reducing the burden of LBW among term babies.

The effect of prenatal care was reflected in the study in Zimbabwe, where a lower LBW rate was reported among both term and preterm babies whose mothers accessed prenatal care before conception. [14]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Categories</th>
<th>Low birth weight</th>
<th>Chi-Square</th>
<th>Df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>&lt;20 (n = 4)</td>
<td>0 (0.0)</td>
<td>4 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-34 (n = 161)</td>
<td>8 (5.0)</td>
<td>153 (95.0)</td>
<td>0.775</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>≥35 (n = 62)</td>
<td>2 (3.2)</td>
<td>60 (96.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td>Single (n = 8)</td>
<td>0 (0.0)</td>
<td>8 (100.0)</td>
<td>0.382</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Married (n = 219)</td>
<td>10 (4.6)</td>
<td>209 (95.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribe</td>
<td>Yoruba (n = 204)</td>
<td>9 (4.4)</td>
<td>195 (95.6)</td>
<td>0.452</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Igbo (n = 16)</td>
<td>1 (6.3)</td>
<td>15 (93.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hausa (n = 4)</td>
<td>0 (0.0)</td>
<td>4 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others (n = 3)</td>
<td>0 (0.0)</td>
<td>3 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational Status</td>
<td>No formal education (n = 4)</td>
<td>0 (0.0)</td>
<td>4 (100.0)</td>
<td>0.705</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Primary (n = 5)</td>
<td>0 (0.0)</td>
<td>5 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junior secondary (n = 5)</td>
<td>0 (0.0)</td>
<td>5 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Senior secondary (n = 73)</td>
<td>7 (9.6)</td>
<td>66 (90.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-secondary (n = 140)</td>
<td>3 (2.1)</td>
<td>137 (97.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td>Trading (n = 101)</td>
<td>4 (4.0)</td>
<td>97 (96.0)</td>
<td>2.201</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Artisan (n = 123)</td>
<td>1 (4.3)</td>
<td>22 (95.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teaching (n = 25)</td>
<td>0 (0.0)</td>
<td>25 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public servant (n = 17)</td>
<td>1 (5.9)</td>
<td>16 (94.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil servant (n = 25)</td>
<td>2 (8.0)</td>
<td>23 (92.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unemployed (n = 20)</td>
<td>1 (5.0)</td>
<td>19 (95.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others (n = 16)</td>
<td>1 (6.3)</td>
<td>15 (93.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paternal level of Education</td>
<td>No formal education (n = 3)</td>
<td>0 (0.0)</td>
<td>3 (100.0)</td>
<td>10.371</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Primary (n = 5)</td>
<td>0 (0.0)</td>
<td>5 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Junior secondary (n = 4)</td>
<td>0 (0.0)</td>
<td>4 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Senior secondary (n = 46)</td>
<td>6 (13.0)</td>
<td>40 (87.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-secondary (n = 169)</td>
<td>4 (2.4)</td>
<td>165 (97.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paternal Occupation</td>
<td>Trading (n = 60)</td>
<td>4 (6.7)</td>
<td>56 (93.3)</td>
<td>6.589</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Artisan (n = 15)</td>
<td>2 (13.3)</td>
<td>13 (86.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teaching (n = 9)</td>
<td>0 (0.0)</td>
<td>9 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public servant (n = 29)</td>
<td>1 (3.4)</td>
<td>28 (96.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Civil servant (n = 53)</td>
<td>0 (0.0)</td>
<td>53 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional (n = 21)</td>
<td>1 (4.8)</td>
<td>20 (95.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unemployed (n = 101)</td>
<td>0 (0.0)</td>
<td>1 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others (n = 39)</td>
<td>2 (5.1)</td>
<td>37 (94.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paternal Income (Naira - N)</td>
<td>&lt;15000 (n = 7)</td>
<td>0 (0.0)</td>
<td>7 (100.0)</td>
<td>8.162</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15000-29999 (n = 29)</td>
<td>4 (13.8)</td>
<td>25 (86.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30000-50000 (n = 47)</td>
<td>1 (2.1)</td>
<td>46 (97.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50001-100000 (n = 81)</td>
<td>4 (4.9)</td>
<td>78 (95.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>&gt;100000 (n = 62)</td>
<td>1 (1.6)</td>
<td>61 (98.4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

df - Degree of freedom; Naira = $1 at the study's time.
The findings in this study further buttress a well-established fact: that IUGR resulting from chronic health problems like malnutrition in the mother is an essential contributor to LBW at term. Thus, reducing its burden through improved nutrition and the socioeconomic state of the family would require a concerted effort by all stakeholders, including primary health care givers and health policymakers.

Conclusion

The prevalence of LBW among term babies in this study was relatively low compared to similar reports from other developing countries. The main contributors were maternal socio-demographic and clinical factors, and Paternal education also played a significant role. Specifically, low maternal ANC booking BMI, anaemia at ANC booking, paternal level of education, multiple pregnancies and alcohol intake in pregnancy were major determinants and should receive focused attention. Introducing pre-conception care is one strategy by which maternal nutrition before pregnancy can be enhanced. Further studies are recommended to assess the effect of alcohol and herbal usage on LBW.

Table VIIa: Maternal clinical correlates of low birth weight

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Low birth weight</th>
<th>Chi-Square</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booking Status</td>
<td>Booked (n = 220)</td>
<td>Yes: 10 (4.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unbooked (n = 6)</td>
<td>No: 210 (95.5)</td>
<td>0.333</td>
<td></td>
<td>0.847</td>
</tr>
<tr>
<td></td>
<td>Referred (n = 1)</td>
<td>0 (0.0)</td>
<td>1 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>Nulliparous (n = 64)</td>
<td>Yes: 3 (4.7)</td>
<td>0.022</td>
<td></td>
<td>0.949</td>
</tr>
<tr>
<td></td>
<td>Multiparous (n = 161)</td>
<td>No: 154 (95.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grand multiparous (n = 2)</td>
<td>0 (0.0)</td>
<td>2 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.45-1.59 (n = 101)</td>
<td>Yes: 3 (3.0)</td>
<td>0.046</td>
<td></td>
<td>0.353</td>
</tr>
<tr>
<td></td>
<td>≥1.60 (n = 126)</td>
<td>No: 98 (97.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Booking BMI (kg/m²)</td>
<td>&lt;18.5 (n = 8)</td>
<td>Yes: 3 (37.5)</td>
<td>24.721</td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>18.5-24.9 (n = 102)</td>
<td>No: 5 (63.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-29.9 (n = 61)</td>
<td>6 (5.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥30 (n = 54)</td>
<td>1 (1.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-pregnancy interval (months)</td>
<td>&lt;24 (n = 106)</td>
<td>Yes: 5 (4.7)</td>
<td>0.046</td>
<td></td>
<td>0.830</td>
</tr>
<tr>
<td></td>
<td>≥24 (n = 121)</td>
<td>No: 101 (95.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous delivery of LBW</td>
<td>Yes (n = 15)</td>
<td>2 (13.3)</td>
<td>3.040</td>
<td></td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>No (n = 212)</td>
<td>8 (3.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational weight gain (kg)</td>
<td>&lt;7 (n = 64)</td>
<td>Yes: 3 (4.7)</td>
<td>2.035</td>
<td></td>
<td>0.361</td>
</tr>
<tr>
<td></td>
<td>7-11.49 (n = 109)</td>
<td>No: 61 (95.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥11.5 (n = 52)</td>
<td>3 (2.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Booking PCV (%)</td>
<td>&lt;30 (n = 101)</td>
<td>Yes: 3 (12.5)</td>
<td>4.070</td>
<td></td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>≥30 (n = 200)</td>
<td>No: 21 (87.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

df - Degree of freedom
### Table VIII: Multiple logistic regression analysis of the correlates of term low birth weight

<table>
<thead>
<tr>
<th>Variables</th>
<th>Categories</th>
<th>Low birth weight</th>
<th>Chi-Square</th>
<th>df</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes (%)</td>
<td>No (%)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HIV infection</td>
<td>Yes (n = 36)</td>
<td>29 (22.2)</td>
<td>7 (77.8)</td>
<td>0.272</td>
<td>0.873</td>
</tr>
<tr>
<td></td>
<td>No (n = 219)</td>
<td>8 (3.7)</td>
<td>210 (96.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic Hypertension</td>
<td>Yes (n = 12)</td>
<td>1 (8.3)</td>
<td>11 (91.7)</td>
<td>0.426</td>
<td>0.496</td>
</tr>
<tr>
<td></td>
<td>No (n = 215)</td>
<td>9 (4.2)</td>
<td>206 (95.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy-induced hypertension</td>
<td>Yes (n = 43)</td>
<td>3(7.0)</td>
<td>40(93.0)</td>
<td>0.833</td>
<td>0.361</td>
</tr>
<tr>
<td></td>
<td>No (n = 184)</td>
<td>7(3.8)</td>
<td>177(96.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-existing Diabetes</td>
<td>Yes (n = 5)</td>
<td>1(20.0)</td>
<td>4(80.0)</td>
<td>0.203</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>No (n = 222)</td>
<td>9(4.1)</td>
<td>213(95.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational diabetes mellitus</td>
<td>Yes (n = 1)</td>
<td>0(0.0)</td>
<td>1(100.0)</td>
<td>0.046</td>
<td>0.830</td>
</tr>
<tr>
<td></td>
<td>No (n = 226)</td>
<td>10(4.4)</td>
<td>216(95.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaria in pregnancy</td>
<td>Yes (n = 114)</td>
<td>3(2.6)</td>
<td>111(97.4)</td>
<td>1.711</td>
<td>0.191</td>
</tr>
<tr>
<td></td>
<td>No (n = 113)</td>
<td>7(6.2)</td>
<td>106(93.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia in pregnancy</td>
<td>Yes (n = 18)</td>
<td>0(0.0)</td>
<td>18(100.0)</td>
<td>0.901</td>
<td>0.343</td>
</tr>
<tr>
<td></td>
<td>No (n = 209)</td>
<td>10(4.8)</td>
<td>199(95.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia at delivery (%)</td>
<td>&lt;30 (n = 15)</td>
<td>1(6.3)</td>
<td>14(93.3)</td>
<td>0.659</td>
<td>0.502</td>
</tr>
<tr>
<td></td>
<td>≥30 (n = 222)</td>
<td>9(4.2)</td>
<td>203(95.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>Yes (n = 26)</td>
<td>0(0.0)</td>
<td>26(100.0)</td>
<td>1.353</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td>No (n = 201)</td>
<td>10(5.0)</td>
<td>191(95.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol use</td>
<td>Yes (n = 12)</td>
<td>2(16.7)</td>
<td>10(83.3)</td>
<td>4.523</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>No (n = 215)</td>
<td>8(3.7)</td>
<td>207(96.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbal usage</td>
<td>Yes (n = 75)</td>
<td>2(2.7)</td>
<td>73(97.3)</td>
<td>0.804</td>
<td>0.370</td>
</tr>
<tr>
<td></td>
<td>No (n = 152)</td>
<td>8(5.3)</td>
<td>144(94.7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Df - Degree of freedom**

**Acknowledgement:** The authors appreciate the management of the Sacred Heart Hospital Abeokuta, Nigeria, for approving the conduct of this study. All the mothers who participated in the survey are also appreciated.

**Authors' Contributions:** OVI and AAJ conceived and designed the study along with MSO. OVI and AAJ did literature review while OVI did data collection and analysis and drafted the manuscript. All the authors interpreted the data, revised the manuscript for sound intellectual content and approved the final version of the manuscript.

**Conflict of Interest:** None.

**Funding:** Self-funded.

**Publication History:** Submitted 20 April 2022; Accepted 06 July 2022.
### Determinants of Low Birth Weight

<table>
<thead>
<tr>
<th>Variables</th>
<th>Category</th>
<th>B</th>
<th>P-value</th>
<th>OR</th>
<th>CI (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booking BMI</td>
<td>&lt;18.5kg/m²</td>
<td>3.409</td>
<td>0.019</td>
<td>30.228</td>
<td>1.761-518.963</td>
</tr>
<tr>
<td></td>
<td>≥18.5kg/m²</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Paternal level of</td>
<td>≤ Secondary</td>
<td>1.813</td>
<td>0.017</td>
<td>9.985</td>
<td>1.636-60.957</td>
</tr>
<tr>
<td>education</td>
<td>Post-secondary</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Booking PCV</td>
<td>&lt;30%</td>
<td>2.121</td>
<td>0.018</td>
<td>8.336</td>
<td>1.432-48.543</td>
</tr>
<tr>
<td></td>
<td>≥30%</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Alcohol Use</td>
<td>Yes</td>
<td>2.223</td>
<td>0.063</td>
<td>10.628</td>
<td>0.879-128.469</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Type of Pregnancy</td>
<td>Multiple</td>
<td>1.817</td>
<td>0.195</td>
<td>6.155</td>
<td>0.395-95.005</td>
</tr>
<tr>
<td></td>
<td>Singleton</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

OR - Odds ratio; CI - Confidence Interval

### References


5. De Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust New Zeal J Obstet Gynaecol 2006; 46: 4-


11. Amosu AM, Atulomah NOS, Olanrewaju MF, Akintunde TI, Babalola AO. Retrospective study of some factors influencing the delivery of low birth weight babies.


Determinants of Low Birth Weight


This is an Open Access document licensed for distribution under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0). This permits unrestricted, non-commercial use, reproduction and distribution in any medium provided the original source is adequately cited and credited.