Restorative Effects of Aqueous Vernonia amygdalina Leaf Extract on Sperm Parameters and Testicular Integrity in Metronidazole-Induced Infertility in Male Rats

Authors

  • Kuburat T Odufuwa
  • Ifabunmi O Osonuga Department of Physiology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • Deborah B Adepeju
  • ALbert A Ogunlade
  • Babatunde O Okebule
  • Victoria B Edema

DOI:

https://doi.org/10.30442/ahr.1104-04-302

Keywords:

Metronidazole, Pituitary-gonadal axis, Testicular antioxidants, Testosterone, Vernonia amygdalina

Abstract

Background: Vernonia amygdalina (VA) is a potent medicinal treatment of regulating endocrine disruptors, such as metronidazole (MTZ), a drug used for the slightest bowel dysfunction. Prolonged metronidazole use alters hormonal balance, affecting reproductive hormones.

Objectives: To examine the ameliorative effect of aqueous leaf extract of VA on the pituitary-gonadal axis, testicular antioxidant levels, and male reproductive organs of metronidazole-induced infertility in male Wistar rats.

Methods: Thirty-five male Wistar rats weighing 160g on average in five groups (n = 7 each) were given 500 mg/kg body weight of metronidazole for 14 days and 300 mg/kg body weight of aqueous leaf extract of VA treatment for another 14 days. Group A (Control group), Group B (Metronidazole only), Group C (Metronidazole + aqueous seed extract of VA), Group D (Metronidazole Recovery), and Group E (Metronidazole + aqueous seed extract of VA + Recovery) were used for the experiment.

Results: Administration of VA treatment increased plasma Luteinising Hormone (LH) and testosterone levels, but FSH levels did not differ. These led to significant increases in sperm count, motility, and viability across VA-treated rats. The tissue antioxidant assay of the testes showed statistically significant increases in the levels of superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) across study groups, while malondialdehyde (MDA) decreased. Improved cellular integrity was also deduced in the testicular photomicrograph of VA-treated rats. The histological analysis also revealed improved pituitary and testicular cells that had been previously damaged by metronidazole following VA treatment.

Conclusions: The aqueous leaf extract of VA showed restorative and anti-inflammatory effects. It also mitigates oxidative stress. Treatment with VA improved sperm parameters and testicular structural analysis, suggesting a regenerative influence on male reproductive health.

References

1. World Health Organization (WHO). Manual for the standardized investigation and diagnosis of the infertile couple. Cambridge: Cambridge University Press; 2000. https://www.who.int/publications/i/item/9780521431361.

2. Practice Committee of the American Society for Reproductive Medicine (PCASRM). Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril 2015;103:e18-e25. https://doi.org/10.1016/j.fertnstert.2014.12.103

3. Sabanegh E, Agarwa A. Male infertility. In: Wein A, Editor. Campbell-walsh Urology. 10th ed. Philadelphia: Elsevier Saunders; 2011. p.616-647. https://link.springer.com/book/10.1007/978-1-4939-1040-3#overview.

4. Leslie SW, Soon-Sutton TL, Khan MAB. Male Infertility. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025. https://www.ncbi.nlm.nih.gov/books/NBK562258/

5. Abd El-Fattah AA, Fahim AT, Sadik NAH, Ali BM. Resveratrol and curcumin ameliorate di-(2-ethylhexyl) phthalate induced testicular injury in rats. Gen Comp Endocrinol 2016;225:45-54. https://doi.org/10.1016/j.ygcen.2015.09.006.

6. Wang YJ, Yan J, Yin F, Li L, Qin YG, Meng CY, et al. Role of autophagy in cadmium-induced testicular injury. Hum Exp Toxicol 2017;36:1039-1048. https://doi.org/10.1177/0960327116678300.

7. Daston G, Cook J, Kavlock R. Uncertainties for Endocrine Disrupters: Our View on Progress. Toxicol Sci 2003;74:245-52. https://doi.org/10.1093/toxsci/kfg105.

8. Darbre PD. The history of endocrine-disrupting chemicals. Curr Opin Endocr Metab Res 2019;7:26-33.

9. Agarwal A, Kanekar S, Sabat S, Thamburaj K. Metronidazole-Induced Cerebellar Toxicity. Neurol Int 2016;8:6365. https://doi.org/10.4081/ni.2016.6365.

10. Patel L, Batchala P, Almardawi R, Morales R, Raghavan P. Acute metronidazole-induced neurotoxicity: an update on MRI findings. Clin Radiol 2020;75:202-208. https://doi.org/10.1016/j.crad.2019.11.002.

11. Sohrabi D, Alipour M, Melati AA. Effect of metronidazole on spermatogenesis, plasma gonadotrophins and testosterone in male rats. Iran J Pharm Res 2007;6:279-283.

12. Brezina P, Yunus F, Zhao Y. Effects of Pharmaceutical Medications on Male Fertility. J Reprod Infertil 2012;13:3-11.

13. Kumari M, Singh P. Tribulus terrestris improves metronidazole-induced impaired fertility in the male mice. Afr Health Sci 2018;18:645-652.

14. Al-Timimi ZK. Metronidazole Induces Significant Pathological Alterations in the Male Reproductive System of Mice. Iraq J Agric Sci 2021;52:1375-1381. https://doi.org/10.36103/ijas.v52i6.1477.

15. Chrousos GP. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N Engl J Med 1995;332:1351-1363.

16. Nutan, Kanwar AJ, Bhansali A, Parsad D. Evaluation of hypothalamic-pituitary-adrenal axis in patients with atopic dermatitis. Indian J Dermatol Venereol Leprol 2011;77:288-293. https://doi.org/10.4103/0378-6323.79697.

17. Falcón J, Zohar Y. Photoperiodism in Fish. In: Skinner MK, editor. Encyclopedia of Reproduction (Second Edition). Vol. 6. Academic Press; 2018. p. 400-408. https://doi.org/10.1016/B978-0-12-809633-8.20584-0.

18. Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism 2018;86:3-17. https://doi.org/10.1016/j.metabol.2017.11.018.

19. Liu S, Manson JE, Lee IM, Cole SR, Hennekens CH, Willett WC, et al. Fruit and vegetable intake and risk of cardiovascular disease: the Women's Health Study. Am J Clin Nutr 2000;72:922-928. https://doi.org/10.1093/ajcn/72.4.922.

20. Gulcin I, Mshvildadze V, Gepdiremen A, Elias R. Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera calchica: 3-O-(b-D-glucopyranosyl)-hederagenin. Phytother Res 2006;20:130-134.

21. Köksal E, Gülçin I, Beyza S, Sarikaya O, Bursal E. In vitro antioxidant activity of silymarin. J Enzyme Inhib Med Chem 2009;24:395-405. https://doi.org/10.1080/14756360802188081.

22. Vostálová J, Tinková E, Biedermann D, Kosina P, Ulrichová J, Rajnochová Svobodová A. Skin Protective Activity of Silymarin and its Flavonolignans. Molecules 2019;24:1022. https://doi.org/10.3390/molecules24061022.

23. Ijaz MU, Anwar H, Iqbal S, Ismail H, Ashraf A, Mustafa S, et al. Protective effect of myricetin on nonylphenol-induced testicular toxicity: biochemical, steroidogenic, hormonal, spermatogenic, and histological-based evidences. Environ Sci Pollut Res Int 2021;28:22742-22757. https://doi.org/10.1007/s11356-020-12296-5.

24. Bihonegn T, Giday M, Yimer G, Animut A, Sisay M. Antimalarial activity of hydromethanolic extract and its solvent fractions of Vernonia amygdalina leaves in mice infected with Plasmodium berghei. SAGE Open Med. 2019;7. https://doi.org/10.1177/2050312119849766.

25. Du-Bois A, Henneh IT, Acheampong DO, Kyei F, Adokoh CK, Ofori EG, et al. Anti-inflammatory, anti-nociceptive and antipyretic activity of young and old leaves of Vernonia amygdalina. Biomed Pharmacother 2019;111:1187-1203. https://doi.org/10.1016/j.biopha.2018.12.147.

26. Bingham HC, Johnson WK, Pervin S, Izevbigie EB. Recent perspectives on the anticancer properties of aqueous extracts of Nigerian Vernonia amygdalina. Botanics (Basel) 2015;5:65-76. https://doi.org/10.2147/BTAT.S62984.

27. Imafidon CE, Olukiran OS, Ogundipe DJ, Eluwole AO, Adekunle IA, Oke GO. Acetonic extract of Vernonia amygdalina (Del.) attenuates Cd-induced liver injury: potential application in adjuvant heavy metal therapy. Toxicol Rep 2018;5:324-332. https://doi.org/10.1016/j.toxrep.2018.02.009.

28. Constance N, Joy DN, Nkeiruka OA, Ahamefula E, Chidimma A, Oluchi AA. Protective effects of bi-herbal formulation of aqueous extracts of Vernonia amygdalina and gongronema latifolium against gentamicin induced nephrotoxicity and liver injury in rats. Asian J Res Biochem 2020;7:12-20.

29. Tijjani MA, Mohammed GT, Alkali YT, Adamu TB, Abdurahaman FI. Phytochemical analysis, analgesic and antipyretic properties of ethanolic leaf extract of Vernonia amygdalina Del. J Herbmed Pharmacol 2017;6:95-99. https://www.herbmedpharmacol.com/Article/JHP_20170619003608

30. Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Gencer MZ, Ammari A, Sadeghi A, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol 2020;89:107088. https://doi.org/10.1016/j.intimp.2020.107088.

31. World Medical Association, American Physiological Society. Guiding principles for research involving animals and human beings. Am J Physiol Regul Integr Comp Physiol 2002;283:R281-R283. https://doi.org/10.1152/ajpregu.00279.2002.

32. Igbokwe UV, Eze ED, Adams MD, Felicia C. Aqueous extracts of Vernonia amygdalina and Ocimum gratissimum protect against electrolyte derangement in salt-loaded rats. Int J Pharm Sci Res 2020;11:1889-97. https://doi.org/10.13040/IJPSR.0975-8232.11(4).

33. el-Nahas AF, el-Ashmawy IM. Reproductive and cytogenetic toxicity of metronidazole in male mice. Basic Clin Pharmacol Toxicol 2004;94:226-231. https://doi.org/10.1111/j.1742-7843.2004.pto940505.x.

34. Amemiya K, Hirotsu Y, Oyama T, Omata M. Relationship between formalin reagent and success rate of targeted sequencing analysis using formalin fixed paraffin embedded tissues. Clin Chim Acta 2019;488:129-134. https://doi.org/10.1016/j.cca.2018.11.002.

35. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972;247:3170-3175.

36. Adedara I, Umin-Awaji SG, Sule J, Mike MA. Influence of atrazine and diclofenac co-exposure on hypothalamic-pituitary-testicular axis function in pubertal rats. Arch Basic Appl Med 2021;9:59-68.

37. Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121-126. https://doi.org/10.1016/S0076-6879(84)05016-3.

38. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-358. https://doi.org/10.1016/0003-2697(79)90738-3.

39. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974;11:151-169. https://doi.org/10.1159/000136485.

40. Bancroft D, Stevens A, Tumer R. Theory and practice of histological technique. 4th ed. Edinburg London Melbourne: Churchill Living Stone; 1996. p. 47-67. https://www.sciencedirect.com/book/9780702068874/bancrofts-theory-and-practice-of-histological-techniques.

41. Hamadouche N, Nesrine S, Abdelkeder A. Lead Toxicity and the Hypothalamic-Pituitary-Testicular Axis. Not Sci Biol 2013;5:1-6.

42. Osonuga IO, Osonuga OA, Osonuga AA. Gonadotoxicity evaluation of oral administration of zidolam in male albino rats. Maced J Med Sci 2010;3:378-382. https://doi.org/10.3889/MJMS.1857-5773.2010.0125.

43. Adewale OO, Oduyemi OI, Ayokunle O. Oral administration of leaf extracts of Momordica charantia affect reproductive hormones of adult female Wistar rats. Asian Pac J Trop Biomed 2014;4:S521-S524. https://doi.org/10.12980/APJTB.4.2014C939.

44. Oyedeji KO, Oshatimi A, Abidoye D, Adeleke KO. Effect of Metronidazole on Reproductive Parameters in Male Wistar Rats. Int J Pharm Sci Rev Res 2015;35:186-190.

45. Okafor IA, Okpara UD, Ibeabuchi KC. The Reproductive Functions of the Human Brain Regions: A Systematic Review. J Hum Reprod Sci 2022;15:102-111. https://doi.org/10.4103/jhrs.jhrs_18_22.

46. Oyovwi MO, Ben-Azu B, Irikefe SO, Oghenetega OB, Emojevwe V, Faith FF, et al. Testosterone: The Male Sex Hormone. IntechOpen 2023.. https://doi.org/10.5772/intechopen.110657.

47. Ugbogu EA, Emmanuel O, Dike ED, Agi GO, Ugbogu OC, Ibe C, et al. The phytochemistry, ethnobotanical, and pharmacological potentials of the medicinal plant-Vernonia amygdalina L (bitter Leaf). Clin Complement Med Pharmacol 2021;1:100006. https://doi.org/10.1016/j.ccmp.2021.100006.

48. Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, Diao L. Impacts of immunometabolism on male reproduction. Front Immunol 2021;12:658432.

49. Oladele JO, Oyeleke OM, Oladele OT, Babatope OD, Awosanya OO. Nitrobenzene-induced hormonal disruption, alteration of steroidogenic pathway, and oxidative damage in rat: protective effects of Vernonia amygdalina. Clin Phytoscience 2020;6:1-9. https://doi.org/10.1186/s40816-020-00161-4

50. Iwo MI, Sjahlim SL, Rahmawati SF. Effect of Vernonia amygdalina Del. Leaf Ethanolic Extract on Intoxicated Male Wistar Rats Liver. Sci Pharm 2017;85:16. https://doi.org/10.3390/scipharm85020016.

51. Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The Fate of Leydig Cells in Men with Spermatogenic Failure. Life (Basel) 2022;12:570. https://doi.org/10.3390/life12040570.

52. Oyeyemi MO, Oluwatoyin O, Leigh OO, Adesiji TF. The spermiogram of male wistar rats treated with aqueous leaf extract of Vernonia amygdalina. Folia Vet 2007;2:126-129.

53. Kadir RE, Ibrahim A, Ibrahim BA, Gwadabe SM, Jaji-Sulaimon R, Adigun MF, et al. Low dose bitter leaf improves sperm quality disrupted in immunosuppressed Wistar rats: An experimental study. Int J Reprod Biomed 2020;18:215-226. https://doi.org/10.18502/ijrm.v18i3.6720.

Downloads

Published

2025-12-29

Issue

Section

Original Research

Most read articles by the same author(s)